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In the beginning of this project, I had expected to com-
plete it in less than a year. Now, four years later, it has
finally come to completion. Along the road, the pressures
of limited resources and conflicting objectives changed
the time line and contributors.

This book had ambitious goals set. What has resulted
is an incomplete description of multilayer films and the
technology to produce them. It is a snapshot that gives
a comprehensive view of multilayer film designs and
technology used. As in any evolving system, things
change and what we can describe today may be
somewhat different tomorrow. The value this book
brings is that it will help interested parties to un-
derstand what is being made and how it is produced.
This will help them deal with current problems and
issues and move forward to invent new products and
processes that will meet future challenges.

The authors who have contributed their time and
extensive knowledge are industry experts and respected
educators from around the world. They have shared their
thoughts and ideas with you so that you can better un-
derstand this important technology and improve your
contributions in your area of expertise.

The book is organized as follows:

Introduction
Raw materials

o Resins
o Additives
o Rheology

Die Design

o Flat
o Blown

Process Considerations
Technologies

o Blown film, cast film and lamination processes
e Machine direction orientation process

o Biaxial orientation

o Blending

o Coating technologies

e Vacuum deposited coating

Preface

Multilayer Film Designs

e PFE based film
e Oriented films

Appendix: Writing guide for describing multilayer film
structures.

As the technology of multilayer films is constantly de-
veloping, it is virtually impossible to have an up-to-the
minute description of every multilayer film and technology
used. So, this book, by definition, is only a snapshot of
what is available. By reading this book, whether you are
a manager, purchasing agent, user, engineer or technician,
you can improve your knowledge and insight into this
important technology that provides safety, freshness
and visual appeal for point of sale awareness.

The introduction starts by presenting a historical per-
spective of the materials used to produce flexible plastic
films. Then a look at how the markets for flexible plastic
films have grown along with an extrapolation to 2020. The
main body of this book is divided into three sections:

e materials
o hardware and processes
o multilayer film designs with applications.

In the materials section, there are chapters about poly-
ethylene and polypropylene, the two major materials
used for flexible film, a comprehensive chapter on addi-
tives used to make polymers functional and then a chap-
ter on rheology which presents important concepts
needed to understand non-Newtonian viscoelastic flow.

The hardware and process section begins with a chap-
ter that describes the dies used to produce multilayer film.
Annular dies are used for blown processes. The several
ways multilayer dies can be designed are presented. Flat
dies are used for cast and oriented films. Multilayer
structures can be produced with multicavity dies, feed-
blocks and by combining feedblocks with multicavity dies.

There is a special chapter on process engineering and
how important this function is to producing multilayer
films that meet specifications and cost targets.

Then there follow chapters about the technologies
used to produce multilayer films. The areas covered are
production of multilayer films, laminating films to
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PREFACE

produce a structure that cannot be produced in a single
step and coating processes. The chapter on blending is
especially useful as blending technology is widely used
and not always easy to understand.

The last section presents PE based and oriented film
based multilayer structures. In these two chapters, you

viii

will learn about many different structures and their
applications.

The Appendix presents a nomenclature or short-
hand language that can be used to describe multilayer

films.
Read. Learn. Enjoy.



This book has been a long time in the making. This
project would not have been possible without the dedi-
cated efforts of the authors who have contributed their
time and knowledge. Before you, the readers, get to read
this book there were just blank pages. Now you can hear
the author’s thoughts across distance and time. It is my
hope and desire that the knowledge presented in these
pages will help you do your jobs more effectively and
efficiently. Therefore, I dedicate this book to the authors
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who have contributed their time and you the reader who
can learn from its contents and perhaps write your own
book which will foster and add to our scientific and
engineering knowledge.

For me, knowledge is the only thing I know that one
can give away and still retain and in the giving enhance
what you have.

Best regards,
John R. Wagner, Jr
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John R. Wagner Jr! and Scott B. Marks?

' Crescent Associates, Inc.
2E.I. du Pont de Nemours & Co

Materials: A historical perspective

Today, we have many clear plastic packaging films. Jacques
E. Brandenberger invented the first common clear film,
‘Cellophane’ in 1908. Jacques was a Swiss textile engineer
who first thought of the idea for a clear, protective,
packaging layer in 1900. He was seated at a restaurant
when a customer spilled wine onto the tablecloth. As the
waiter replaced the cloth, Brandenberger decided that he
would invent a clear flexible film that could be applied to
cloth, making it waterproof.

He experimented with different materials and tried
applying liquid viscose (a cellulose product known as
rayon) to cloth, but the viscose made the cloth too stiff.
His idea failed but he noted that the coating peeled off
in a transparent film. Like so many inventions, the
original use was abandoned and new and better uses
were found. By 1908, he developed the first machine for
the manufacturing of transparent sheets of regenerated
cellulose. By 1912, Brandenberger was making a saleable
thin flexible film used in gas masks. He obtained patents
to cover the machinery and the essential ideas of his
process [1]. The rights to the production of cellophane
were then obtained by E.I. du Pont de Nemours & Co,
who began to produce and refine further the process for
producing cellophane. Breakthrough improvements in-
cluded adding a moisture barrier layer to the cellophane,
in the form of a nitrocellulose coating. This allowed for
better stiffness retention in the cellophane and

Multilayer Flexible Packaging; ISBN: 9780815520214

facilitated use of the film as an overwrap film for foods.
This coating was then refined to make it heat sealable as
well, creating the first readily sealable transparent
packaging film. Later on, other coatings were applied to
cellophane including PVdC (polyvinylidene chloride),
which added oxygen barrier and moisture barrier to the
cellophane, resulting in the original non-metal barrier
film for food packaging.

Today, we have many polymers such as PE (poly-
ethylene), PP (polypropylene), PET (polyester) and PS
(polystyrene) that are used to produce clear films for
packaging. While these aforementioned polymers are
commonly used in monolayer format, they are also used in
multilayer films produced by coextrusion and/or lamina-
tion processes. There also exists a broad variety of spe-
cialty polymers and compounds which sometimes are used
monolithic, but are more commonly used in coextrusions.

Polyethylene was first synthesized by the German
chemist Hans von Pechmann who prepared it by accident
in 1898 while heating diazomethane. When his col-
leagues Eugen Bamberger and Friedrich Tschirner char-
acterized the white, waxy substance that he had created,
they recognized that it contained long -CH3- chains and
termed it polymethylene [2].

The first industrially practical polyethylene synthesis
was discovered (again by accident) in 1933 by Eric
Fawcett and Reginald Gibson at the ICI works in
Northwich, UK. Upon applying extremely high pressure
(several hundred atmospheres) to a mixture of ethylene

Copyright © 2009 Elsevier Inc. All rights of reproduction, in any form, reserved.
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and benzaldehyde, they again produced a white, waxy
material. Because the reaction had been initiated by trace
oxygen contamination in their apparatus the experiment
was, at first, difficult to reproduce. It was not until 1935
that another ICI chemist, Michael Perrin, developed this
accident into a reproducible high-pressure synthesis for
polyethylene that became the basis for industrial low-
density (LD)PE production beginning in 1939 [2].

Subsequent landmarks in polyethylene synthesis have
revolved around the development of several types of
catalyst that promote ethylene polymerization at more
mild temperatures and pressures. The first of these was
a chromium trioxide-based catalyst discovered in 1951
by Robert Banks and J. Paul Hogan at Phillips Petroleum.
In 1953, the German chemist, Karl Ziegler, developed
a catalytic system based on titanium halides and orga-
noaluminum compounds that worked at even milder
conditions than the Phillips catalyst. The Phillips catalyst
is less expensive and easier to work with, however, and
both methods are used in industrial practice.

By the end of the 1950s, both the Phillips and Ziegler
type catalysts were being used for high-density (HD)PE
production. Phillips initially had difficulties producing an
HDPE product of uniform quality and filled warehouses
with off-specification plastic. However, financial ruin was
unexpectedly averted in 1957 when the hula hoop, a toy
consisting of a circular polyethylene tube, became a fad
among youth in the USA.

A third type of catalytic system, one based on
metallocenes, was discovered in 1976 in Germany by
Walter Kaminsky and Hansjérg Sinn. The Ziegler and
metallocene catalyst families have since proven to be very
flexible at copolymerizing ethylene with other olefins and
have become the basis for the wide range of polyethylene
resins available today, including very low-density poly-
ethylene and linear low-density polyethylene. These new
catalysts have allowed creation of some very special
polyethylene resins. One such example is the polymer
used to produce DSM’s ‘Dyneema’ fiber, an ultra high
strength material that competes with aramid based fibers
in a variety of applications where high strength is needed,
but not where high temperature resistance is also
needed. As it has always been, new materials find their
useful niches in the market.

Until recently, the metallocene systems were the most
active single-site catalysts for ethylene polymerization
known — new catalysts are typically compared to zirco-
nocene dichloride. Much effort is currently being
exerted on developing new, single-site (so-called post-
metallocene) catalysts that may allow greater tuning of
the polymer structure than is possible with metallocenes.
Recently, work by Fujita at the Mitsui Corporation
(among others) has demonstrated that certain salicy-
laldimine complexes of Group 4 metals show sub-
stantially higher activity than the metallocenes [2].
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Dr Karl Rehn at Hoechst AG in Germany first poly-
merized polypropylene in 1951 and did not recognize the
importance of his discovery. It was then rediscovered on
March 11, 1954, by Giulio Natta [3]. Biaxially oriented
polypropylene (BOPP) was introduced in the 1960s.
Initially, it was developed in a blown film process and the
first commercial production was started by DuPont in
Iowa, USA. Eventually, other companies started to pro-
duce BOPP in a cast sheet/orientation process which
made the film production more economical. This change
was instrumental in replacing cellophane, as it was lower
cost and more environmentally friendly to produce. As
BOPP usage gained in the industry, there was a corre-
sponding decline in cellophane usage and production.
Today, cellophane production is a mere fraction of what it
once was.

British chemists, John Rex Whinfield and James
Tennant Dickson, employees of the Calico Printer’s
Association of Manchester, patented ‘polyethylene
terephthalate’ (also called PET or PETE) in 1941, after
advancing the early research conducted by Wallace
Carothers of DuPont. They saw that Carothers’ research
had not investigated the polyester formed from ethylene
glycol and terephthalic acid. Polyethylene terephthalate
is the basis of synthetic fibers such as generic polyester
fiber and specialty fibers such as Invista’s ‘Dacron’.
Whinfield and Dickson along with inventors W.K. Birt-
whistle and C.G. Ritchie also created the first polyester
fiber called ‘Terylene’ in 1941 (first manufactured by
Imperial Chemical Industries or ICI). The second poly-
ester fiber was DuPont’s ‘Dacron’ (now a product of
Invista Corp.) [4].

Polystyrene was discovered in 1839 by Eduard Simon
[5], an apothecary in Berlin. From storax, the resin of the
Turkish sweet gum tree (Liquidambar orientalis), he
distilled an oily substance, a monomer which he named
styrol. Several days later, Simon found that the styrol had
thickened, presumably from oxidation, into a jelly he
dubbed styrol oxide (‘Styroloxyd’). By 1845, English
chemist John Blyth and German chemist August
Wilhelm von Hofmann showed that the same trans-
formation of styrol took place in the absence of oxygen.
They called their substance metastyrol. Analysis later
showed that it was chemically identical to Styroloxyd. In
1866, Marcelin Berthelot correctly identified the for-
mation of metastyrol from styrol as a polymerization
process. About 80 years went by before it was realized
that heating of styrol starts a chain reaction which pro-
duces macromolecules, following the thesis of German
organic chemist Hermann Staudinger (1881-1965). This
eventually led to the substance receiving its present
name, polystyrene.

The company 1.G. Farben began manufacturing poly-
styrene in Ludwigshafen, Germany, about 1931, hoping
it would be a suitable replacement for die-cast zinc in



many applications. Success was achieved when they de-
veloped a reactor vessel that extruded polystyrene
through a heated tube and cutter, producing polystyrene
in pellet form.

In 1959, the Koppers Company in Pittsburgh,
Pennsylvania, developed expanded polystyrene (EPS)
foam [5].

Other polymers used in the packaging industry have
had similar stories of invention ranging from purely
accidental discovery to hard wrought research.

Markets: A global economy

The dynamics of the industrialized nations post World
War II have lead to a plethora of applications for many
polymers from the mid-20th century continuing into the
21st century. The flexible packaging industry has been
one significant part of this engine of growth and adoption
for use in many applications has expanded into a global
economy, as many newly industrialized nations have
become global players in trade.

Looking at recent years only in the USA, Table 1-1 [6]
shows the flexible plastic packaging films market (in
million 1b) in the USA for three packaging films for the
years 2002 and 2007.

Fig. 1-1 plots these data and shows a trend line for the
total film market. This exponential fit trend line calcu-
lates a 4.5% growth rate from the 2002 to 2007 data. At
this growth rate, the US flexible packaging film market
could be over 20 billion pounds in 2020.

Selected data from the US census office for the
NAICS code 26112 (Unsupported plastics packaging
film & sheet mfg) is shown in Table 1-2 [7]. In addition to
these selected data, the total value shipments have been
adjusted to 1997 dollars using data from the Misery
index web site [8].

Fig. 1-2 plots the data in Table 1-2 for employees, total
value shipments and the adjusted total value shipments
to 1997 dollars versus year. The exponential curve fits,
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Fig. 1-1 Flexible packaging film market in the USA — sales volume
Versus year.

calculate the total value shipment growth rate at 9.16%
and the employee growth rate at 6.96%. When the total
value shipments are adjusted to 1997 dollars
the calculated growth rate is 6.73%. This suggests that
the market was growing at a 7% rate over this time period
and it closely followed the employee growth rate. If one
were to do a more rigorous estimate of future growth,
one would have to have good historical sales and popu-
lation data. Market growth is a function of market pen-
etration, i.e. pounds of material used per person and
number of people. Looking at global data one would find
that there are countries with minimal market penetra-
tion, some with average market penetration and some
where the value of flexible plastic packaging is highly
recognized and are leaders in taking advantage of the
benefits flexible films give.

Table 1-2 Selected data from the US census office for the NAICS

code 26112 (Unsupported plastics packaging film & sheet mfg)

Total 1997
Table 1-1 Flexible plastic packaging films market in the USA: Total value value
breakdown of volume sales by material type for the years 2002 shipments  shipments
and 2007 (in million Ib) Year Companies Employees ($1000) ($1000)
Flexible plastic 2002 2007 1997 131 15428 3638911 3638911
Packaging film type 1998 15288 3998678 3937645
Polyethylenes 7676.6 9584.3 1999 16 447 4813330 4638 284
Polypropylene 1160.3 1449.2 2000 17 327 4823210 4495 845
Thermo plastic polyesters 131.2 170.0 2001 16 875 4782978 4 335645
Total 8968.1 11203.5 2002 207 23418 6203 922 5535676
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Fig. 1-2 Shipment value and number of employees versus year.

Processes, materials, needs

Coextrusion is used in the following processes:

blown film

cast film (<10 mils or <250 um)
cast sheet (>10 mils or >250 pm)
blow molding

tubing and sheathing

extrusion coating and laminating
profile.

Fig. 1-3is a flow diagram of a coextrusion feedblock where
three extruders are employed to produce a three-layer

3-layer-coextrusion
with barrier layer outside

1 Main extruder body layer
2 Satellite extruder 1: adhesive
3 Satellite extruder 2: barrier layer

Fig. 1-3 Flow diagram of a coextrusion feed block where three
extruders are employed to produce a three-layer asymmetrical
structure.

asymmetrical structure. This particular design has the
barrier on the outside with a tie layer to provide adhesion
to the core resin.

While a large majority of polymer extrusion is done in
monolithic form, the world of coextruding polymers has
been growing now for half a century. The whole concept
of polymer extrusion grew from the already existing
technology for extrusion of processed foods, ranging
from cereals to meats. Likewise, coextrusion was being
practiced in the food industry before it was practiced
using molten polymers. Without realizing it, every reader
of this manuscript has likely consumed some type of
coextruded food in the form of candy, bakery items,
cereals or processed meats.

Some considerations as to why we may wish to
coextrude polymers are:

o to bring the desired properties of differing materials
into one structure

to reduce emissions from solvents used in adhesive
lamination processes

to process multiple materials in one pass into

a structure to save process steps, cost and time.

Coextruding polymers is no simple matter. In the food
industry, they have their compatibility issues and, in the
polymer industry, we take the complexity to a higher level.
‘We must consider the three main scientific property arenas
related to moving a polymer from solid form to liquid form
and back to solid form of a differing shape, which are:

o thermal
o fluid
o mechanical [9].

Thermal considerations are important because the
processes are non-isothermal. The science of fluid



flow is important because the fluids are non-Newto-
nian viscoelastic with non-linear temperature de-
pendent viscosities. These fluids have interfacial
boundaries that depend on the fluids’ viscosity and
normal stress difference. Mechanical considerations
are important because the metal that contains the
fluid flow is subjected to internal pressure forces
which distort the metal. The metal has to be shaped
properly and has thermal mass and chemical re-
sistance characteristics, which interact with the
flowing fluids.

However, the benefits of combining materials in
coextrusion far outweigh the challenges associated with
such an endeavor. Coextrusion provides solutions to
meet product functionality. There is a variety of film
properties that need to be taken into consideration when
designing a packaging film. Some properties relate to the
surface characteristics while others relate to the entire
thickness/body of the film. Surface characteristics typi-
cally include coefficient of friction (COF), gloss, haze
(surface induced) and sealability, as well as surface ten-
sion and chemical receptivity, which are important for
materials to be printed. ‘Body’ characteristics include
tensile properties, elongation, haze (internally induced),
transparency, color, impact strength and a variety of other
parameters.

Additionally, packaging requirements may also include
gas and aroma barrier, chemical resistance, puncture re-
sistance, formability and shrink properties. In a world
where energy prices keep rising, the biggest challenge is
to have a structure that includes all the desirable prop-
erties in the most economical way. This requires that
processors have a good understanding of the material
properties, as well as a good grasp of polymer rheology to
achieve an optimal formulation especially when
attempting to coextrude [10].

In designing a coextruded film one has to consider the
world of needs including [11]:

o physical properties
o tensile, elongation, flexure, stiffness
o hardness, toughness, puncture, COF
o sealability, peelability, etc.
o barrier properties
o oxygen, moisture, oil, chemical
o aroma/fragrance, carbon dioxide, etc.
o additives
o colors, mineral fillers, COF modifiers, melt frac-
ture inhibitors, scavengers, etc.

A typical coextruded structure will have a bulk layer,
a barrier layer, a sealant layer and, often, an adhesive layer
to join incompatible layers. Reclaim also has to be con-
sidered and can be put back into its own layer or into the

bulk layer [12].
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Common choices for the bulk layer are usually from
the following groups [12]:

e PE (polyethylene)

o HD (high density), LLD (linear low density), LD
(low density), VLD (very low density)

PP (polypropylene)

o HoPP (homopolymer PP), CoPP (ethylene-
propylene copolymer), Ter-PP (ethylene-propyl-
ene-butene terpolymer)

Acrylates

o EMA (ethylene methyl acrylate)

o EBA (ethylene butyl acrylate)

o EEA (ethylene ethyl acrylate)

o PMMA (poly(methyl methacrylate))

o EMMA (ethylene/methylmethacrylate)

EVA (ethylene vinyl acetate)

o low %, med %, high % VA

PS (polystyrene)

o HIPS (high impact PS), GPPS (general purpose PS).

The criteria that are important to consider are:

e cost

o adhesion

o flexibility

e softness

o stiffness, etc.

Resin selection criteria are:

e melt index - MW and MWD (physical properties
tensile strength, organoleptics)

o density — crystallinity (opticals, permeability,
modulus - i.e. LDPE)

e molecular branching — (melt strength, processing
parameters)

e comonomer content — all properties

e melt point — crystallinity (seal initiation temp.,
thermoforming).

Following is a list of generic names for extrudable resins.

When the brand/grade of a polymer is unknown, it can be

referred to in this fashion to help communicate better

about the nature of the material [12]:

o Polyethylenes

o HDPE — high density polyethylene

o HMW-HDPE - high molecular weight HDPE

o MDPE — medium density polyethylene

o LDPE - low density polyethylene

o LLDPE - linear low density polyethylene

o VLDPE - very low density (linear) polyethylene
(also VLLDPE)

o ULDPE - ultra low density polyethylene (also
ULLDPE)

o mPE - metallocene polyethylene, generic.
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o mLMDPE - metallocene linear medium density
polyethylene

o mLLDPE - metallocene linear low density
polyethylene

o mVLDPE - metallocene very low (linear) density
(sometimes referred to as a ‘plastomer’)

Polypropylenes

o PP — polypropylene (generic indication when
minimal information is known)

o CoPP - copolymer polypropylene

o HoPP — homopolymer polypropylene

o Ter-PP — terpolymer polypropylene

Acid copolymer resins

o ACR - acid copolymer resin, generic name
for EAA and EMAA resins

o EAA - ethylene acrylic acid copolymer, such as
DuPont Nucrel®, Dow Primacor® and Exxon-
Mobil Escor®

o EMAA - ethylene methacrylic acid copolymer,
such as DuPont Nucrel®

o Ionomer — generic name for ionomeric copolymer
resins, such as DuPont Surlyn®, and ExxonMobil
lotek®

Acrylates

o Acrylate — generic name for various acrylate copol-
ymers, such as DuPont Elvaloy AC®, Arkema
Lotryl®, Westlake EMAC®, ExxonMobil
Optema®

o EBA - ethylene butyl acrylate

o EEA — ethylene ethyl acrylate

o EMA - ethylene methyl acrylate

o EMMA - ethylene methyl methacrylate

o EiBA - ethylene iso-butyl acrylate

o EnBA - ethylene normal-butyl acrylate

Ethylene vinyl acetates

o EVA - ethylene vinyl acetate; examples: DuPont
Elvax®, AT Plastics Ateva®, Equistar Ultra-
thene®, ExxonMobil Escorene Ultra®

Polystyrenes

o PS — polystyrene

o EPS - expanded (or foamed) polystyrene

o HIPS - high impact polystyrene

o GPPS — general purpose polystyrene

Polyvinyl chlorides

o PVC - polyvinyl chloride

o PVdC - polyvinylidene chloride. Most commonly
seen as a coating on a film, but there are also
extrudable grades, such as Dow Saran® and SolVin
Ixan®

Terpolymers

o EVACO - terpolymer of ethylene, vinyl acetate
and carbon monoxide

o EnBACO - terpolymer of ethylene, normal-butyl
acrylate and carbon monoxide

o EiBAMAA - terpolymer of ethylene, isobutyl
acrylate and methacrylic acid

o (there are various other terpolymers in the industry)

o Grafted resins

o EVA-gMAh - ethylene vinyl acetate with a graft
of maleic anhydride

o LLDPE-gMAh — LLDPE with a graft of maleic
anhydride

o (therearevarious other grafted resins in the industry)

e Others

o Peel Seal or Easy Peel — generic name for a peelable seal-
ant resin of unknown brand and grade. Example brand
names include: DuPont Appeel®, Mitsui-DuPont
CMPS®, Yasuhara Hirodyne® or Toyo Topco®

o TPS — generic name for ‘thermoplastic starch’
resin. These are a new family of materials in the
market, for example, Plantic® TPS or DuPont
Biomax® TPS.

Materials and barrier

When one talks about ‘barrier’, please note that there are
differences in interpretation of what this relates to. For
some it may be related to oxygen, while for others moisture
barrier may be more important. Barrier to other parameters
may also be of greater or lesser importance including carbon
dioxide, oils, acids, flavors, aromas, fragrances, solvents and
other chemicals. Each polymer has its own unique charac-
teristics and properties and, thus, will have differing ‘bar-
rier’ performance. Which polymer or combination of
polymers you may wish to coextrude will depend upon
whether you need a barrier for oxygen, water, oil, aroma or
something else and to what degree for each property. Some
common resins that can be used for certain barriersare [12]:
e Nylon, polyamide, (PA)

o oxygen barrier, aroma barrier, and some oil barrier
o« EVOH

o oxygen barrier, flavor/aroma barrier
e PET

o moisture barrier, some flavor/aroma barriers

and some chemical barrier needs

e PVdC

o Good for moisture, oxygen, flavor, aroma,

and some chemical

o HDPE

o moisture barrier
e PP

o moisture barrier
e ionomer

o oil barrier, some chemical barrier.



When choosing one or more of these resins to coextrude, in
addition to the barrier properties, you must also understand
the criteria for flex durability, clarity and other physical
parameters related to each material and how it adds or
diminishes from the needs of the overall coextrusion.
Following here is some general information on Nylon.
This is a material that is used broadly in coextrusions, but
has some unique properties related to processing, so
cannot be dropped into any extruder at will [12, 13].
Nylon or polyamide common types:
e Nylon 6: melting point (MP)=220°C (430°F)
o The most common grade used in flexible packaging
coextrusions
e Nylon 66: MP=250°C (480°F)
e Nylon 6/66: MP=210°C (410°F)
e Amorphous Nylon
o used mainly in blends with Nylon 6 or 66, but
occasionally is used pure
e Nylon 11 and 12: MP=180°C (360°F).

It is important to note that extrusion screws for Nylon
are generally very different in design versus PP, PE and
ethylene copolymer screws. Thus, do not just try ex-
truding Nylon resin through a screw not known to be
designed for Nylon. Please consult with the equipment
manufacturer for advice. Without doing so, you run the
risk of damaging equipment including but not limited to
the screw, gearbox and drive motor on the extruder.

There are a number of extrusion grade Nylon resin
producers who supply globally:

o Honeywell
e BASF

e Bayer

e DuPont

o EMS

e Mitsubishi
e Ube, etc.

The features that one can obtain with Nylon are:

e good gas barrier

o good thermoformability

e good toughness, abrasion resistance, tensiles

e good optics

e good oil resistance.

The extrusion issues for consideration with Nylon are:

o crystalline melt point

o flow properties change rapidly from solid to melt and
back to solid. SAFETY!

e moisture sensitivity

e various types, so need to choose extrusion tempera-
ture profiles carefully

o ‘high’ extrusion temperature needed

o almost always processed in coextrusion.
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Ethylene vinyl alcohol, commonly known as ‘EVOH’,
has grown into a very useful barrier resin in the flexible
packaging industry. Ethylene vinyl alcohol began its life
in the 1950s as an offshoot of research into polyvinyl
alcohol adhesive polymers. Ethylene vinyl alcohol was
originally developed and patented by the DuPont
Company, but the polymer did not have properties of
value as an adhesive. In the 1950s, there was no barrier
film coextrusion market, so looking at the barrier
properties of the polymer was not even something of
consideration. The technology for EVOH was eventually
sold to the Monsanto Company. Monsanto, in turn, later
sold it to a Japanese corporation and, by this time,
coextrusion was in swing and barrier films containing
Nylon were becoming prevalent. The oxygen barrier
properties of EVOH were studied and found to be very
interesting if you keep the polymer dry, protecting it
from moisture by other polymers in coextruded films
[12, 13]. Today, there are three major suppliers of
EVOH:

e Kuraray Eval®
o Evalca Eval® (subsidiary of Kuraray in the USA)
o Nippon-Gohsei Soarnol®.

Ethylene vinyl alcohol characteristics are:

e good oxygen barrier when dry
e almost always run in coextrusion
o needs tie layers (except to Nylon)
e moisture sensitive
o thermal sensitivity
o needs short, smooth flow paths when designing
extrusions systems
e good optical properties
o high stiffness
o flex crack sensitivity.
Polyester has been previously discussed in this
introduction with regards to its history.

There are many types of polyester and the most
important one for films/sheet is PET (polyethylene
terephthalate). Polyethylene terephthalate is typi-
cally oriented to provide strength, clarity and bar-
rier properties. Polyethylene terephthalate for
extrusion coating is more challenging to process
compared to common polyolefins, such as PE and PP,
and requires special equipment. Coextrusion makes
it easier to run, but will require use of in-line dryers
and proper PET screw designs [12,13]. Suppliers
of film and extrusion coating resins in the USA
would be:

o Eastman
e DuPont
e M&G (formerly Shell).
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Polyester type polymers found in the packaging industry
include:

o PET - generic extruded polyester. Could be mono-
layer or in a coextrusion

o PEText.ctg. — generic extrusion coating of polyester

o APET - amorphous polyester

o CPET - crystalline polyester

e PETor PETE — polyethylene terephthalate

e PETG - polyester copolymer with glycol

e PBT - polybutylene terephthalate

o PPT - polypropylene terephthalate

e PTT - polytrimethylene terephthalate

e PEN — polyethylene napthalate

e PLA — polylactic acid

e PGA - polyglycolic acid

e PHA - polyhydroxyalkanote.

Other resins that can be considered to provide a barrier
of some type are:

o PAN - polyacrylontrile, sometimes written as ‘ACN’

e SAN - styrene acrylonitrile copolymer

o AN-MA — acrylonitrile methyl acrylate copolymer
(such as Innovene, Barex®)

o ABS - acrylonitrile butadiene styrene copolymer

e LCP - liquid crystal polymer

e COC - cyclic olefin copolymer, such as TAP Topas®
or Mitsui Apel®

e PUR - polyurethane, extrudable type when seen in
a coextrusion, for example

e SBC - styrene butadiene copolymer (such as Chev-
ronPhilipps K-Resin®).

Materials and sealing

When assembling a coextruded film for the flexible
packaging industry, most films require that they be seal-
able. The most common seal method is thermal, using
a constant temperature sealer or a variable temperature
impulse sealer. Other seal methods include:

e radiofrequency

e high frequency

e ultrasonic

e pressure sensitive.

Given that thermally created seals are the most common,
following is an overview of what to consider when con-
sidering a material for the sealing layer.

The sealant layer choice should be made considering
the application needs, since each parameter does not
need to be maximized in order to perform in the given
end use. What is important is finding the appropriate
balance with properties such as:
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o hot tack strength

o heat seal strength

e seal initiation temperature

o sealing speed

o coefficient of friction

o ability to seal through a given contaminant

o chemical resistance to the material to be contained
e economics, etc.

The most common sealant layer resins range from high
performance to commodity performance. Inherent
property differences in the polymers will affect the
sealing performance and, since there is such a broad range
of polymer grades in each family, it is best to consult with
polymer suppliers to match your given needs to the
performance of a given resin such as:

ionomers of acid copolymers

e acid copolymer (EAA or EMAA)

e mVLDPE (very low density)

e EVA or EMA blends with LLDPE

« CoPP/TerPP, EVA, EMA, LLDPE, mLLDPE
e LDPE or PP.

Bringing things together

When assembling coextrusion structures, some materials
will bond to other materials. However, the adhesion level
may be insufficient for the durability needs of the given
application. In order to create a more robust structure, it is
required to use a material designed specifically to bond one
material to another with improved interlayer adhesion.
The family of polymers that will work as a ‘facilitator’ in
this case is commonly called ‘tie resins’. They are designed
to act as glue and provide adhesion between the in-
compatible layers. These ‘coex tie’ resins are designed to
provide both mechanical and/or chemical bonding to
other polymers when in a molten state. The adhesive
strength obtained will be a function of the tie resin for-
mulation and the coextrusion process parameters. It
should be recognized that the extrusion process can have
a significant impact in generating interlayer adhesion. For
example, taking the same structure from a blown film
process to a cast film process using the same resins, usually
will not translate into obtaining the same interlayer ad-
hesion. Thisis a complex topic for another discussion [12].

To achieve higher bond strengths than attainable with
a base polymer, resins are formulated with a variety of
materials including grafted functional groups and/or are
compounded with an array of modifiers. Proper choice of
the correct ‘tie’ resin is based on many variables in-
cluding, extrusion processing parameters and material
end use parameters. Your ‘tie’ resin supplier can provide
helpful recommendations [12,13].



Base resins typically used for tie layers are:

LDPE, LLDPE, HDPE
EVA, PP

acrylate copolymers
acid copolymers.

Common modifiers used are:

maleic anhydride
olefinic tougheners
tackifiers

rubbers.

Some tie resin suppliers include:

DuPont

Mitsui

Equistar

Mitsubishi

Arkema

Rohm & Haas

Dow

DSM and several others.
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When selecting a coextrudable adhesive resin, it is always
useful to choose the correct resin for a given process and/or
end-use application. If an EVA resin is selected care
must be paid to temperature limitations of the extru-
sion process since EVA should not be processed over
235°C (455°F). For all resins, the tie layer rheology
must match with adjacent materials to assure good
layer uniformity with no ‘interfacial instability’. Some
materials have a minimum temperature that is neces-
sary to generate adhesion via chemical and/or me-
chanical interaction. Extrusion ‘process time’ is also an
important factor and related to the time between the
polymers exiting the die and solidification. This relates
to the ‘cooling’ and ‘drawing’ of the polymers and in-
ternally induced stresses during production. Coex-
trusion feedblock and die design are also influential in
how a ‘tie resin’ may be able to generate interlayer
adhesion [12].

This book is an attempt to provide a snapshot of
multilayer flexible films and where they are used. Like
any still picture, this book cannot describe the future and
the innovative uses, applications and film designs that
will drive these products to fill the needs of consumers.
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